

I. Fellowship Overview

1. Mission and Objectives

- Train fellows to develop proficiency in robotic donor nephrectomy, kidney implantation, hepatopancreatobiliary (HPB) surgery, living donor hepatectomy, and liver transplantation, equipping them with advanced skills for their career advancement.
- Enhance fellows' research capabilities and academic contributions to robotic transplant and HPB surgery.

2. Program Duration and Structure

- Duration: 12 months.
- o Rotations: Four 3-month blocks focused on specific robotic surgical areas:
 - Robotic donor nephrectomy.
 - Robotic kidney implantation.
 - Robotic HPB surgery.
 - Robotic liver transplantation (donor and recipient).
- o Progressive technical training sequence based on proficiency milestones.

3. Eligibility Requirements

- o Completion of an ASTS-accredited Abdominal Transplant Fellowship.
- Documented robotic surgery experience as bedside or primary surgeon in at least 50 cases.
- Ability to meet visa and credentialing requirements in Saudi Arabia.

4. Selection Process

- Fellows will be selected through a multidisciplinary team interview, ensuring a transparent and competitive application system.
- Applicants must meet all eligibility criteria and submit their applications through the SF Match platform by the specified deadlines.

5. Faculty Leadership

- o Prof. Dieter Broering, MD, PhD
- o Dr. Yasser Elsheikh, MD.
- Prof. Massimo Malago, MD, PhD
- Dr. Yasir Alnemary, MD

6. Fellow Benefits

- Competitive compensation to ASTS fellowship programs in the US.
- Hospital-provided accommodation (single or family)
- Repatriation flight tickets (economy class, fellow and dependents)
- Health coverage for the Fellow and dependents at King Faisal Specialist Hospital while in Saudi Arabia.
- 30-day annual leave, 1 professional leave

II. Curriculum and Rotation Breakdown

A. Robotic Donor Nephrectomy (Months 1-3)

1. Clinical Objectives

- Achieve mastery in robotic living donor nephrectomy.
- Develop skills in preoperative evaluation and perioperative management of donors.

2. Technical Training

- Robotic port placement and system docking.
- Hilar dissection and vascular control.
- Kidney extraction using robotic tools.

3. Projected Case Volume

75 robotic donor nephrectomies.

4. Didactic and Research Components

- Weekly anatomy and technique lectures.
- Participate in ongoing donor safety research projects.

B. Robotic Kidney Implantation (Months 4-6)

1. Clinical Objectives

- Develop technical skills in robotic kidney transplantation.
- Manage post-transplant complications such as ureteral strictures and vascular thrombosis.

2. Technical Training

- o Precise vascular and ureteral anastomosis using robotic techniques.
- Optimization of graft placement and perfusion.

3. Projected Case Volume

30 robotic kidney implantations.

4. Didactic and Research Components

- Weekly case discussions on immunology and transplant outcomes.
- Video preparation and analysis of robotic kidney transplantation techniques.

C. Robotic Hepatopancreatobiliary (HPB) Surgery (Months 7-9)

1. Clinical Objectives

- Master advanced robotic techniques for liver and pancreatic resections.
- Understand oncological principles and complex biliary reconstructions.

2. Technical Training

- Robotic liver parenchymal transection.
- Pancreaticojejunostomy and bile duct reconstructions.

3. Projected Case Volume

25 robotic HPB procedures.

4. Didactic and Research Components

- o Participation in multidisciplinary tumor boards.
- o Collaborative research on robotic HPB surgery outcomes.

D. Robotic Liver Transplantation (Months 10-12)

1. Clinical Objectives

- o Gain expertise in robotic donor and recipient liver transplantation.
- Address immunological and technical challenges in robotic liver transplantation.

2. Technical Training

- Robotic donor hepatectomy.
- Complex vascular and biliary anastomoses in liver recipients.

3. Projected Case Volume

- 40 robotic donor hepatectomies
- 10 robotic liver transplantations.

4. Didactic and Research Components

- High-fidelity simulation of robotic hepatectomy and transplantation techniques.
- Research collaboration with faculty on robotic liver transplant advancements.

III. Research and Academic Responsibilities

1. Research Projects

- Fellows will engage in at least one clinical or outcomes research project related to robotic transplant surgery.
- Preparation and submission of a peer-reviewed publication.

2. Video Editing and Case Preparation

 Fellows will create and analyze videos of their robotic procedures to enhance learning and technique refinement.

3. Conference Presentations

 Participation in national and international transplant and HPB surgery conferences.

IV. Evaluation and Milestones

1. Performance Assessments

- Monthly evaluations by faculty based on surgical logs and technical milestones.
- Progressive independence based on demonstrated proficiency.

2. Surgical Volume Requirements

 Completion of minimum case volumes for robotic procedures across rotations.

3. Certification

 Certificate of completion by King Faisal Specialist Hospital endorsed by the American Society of Transplant Surgeons upon fulfilling program requirements.

V. Administrative Details

1. Facilities and Equipment

- o Dedicated robotic surgical suites equipped with the latest technology.
- Simulation labs for hands-on practice.

2. Support Services

 Access to dedicated transplant coordinators, research assistants, and surgical technicians.